Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.805
Filtrar
1.
J Affect Disord ; 356: 233-238, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608768

RESUMO

BACKGROUND: The population with depression had a considerable excess mortality risk. This increased mortality may be attributed to the biological consequences of depression or the substantial prevalence of health risk behaviors (HRBs). This study aimed to quantify the combined effects of four major HRBs - smoking, excessive alcohol use, physical inactivity, and an unhealthy diet - on excess mortality among depressed individuals. METHODS: This study included 35,738 adults from the National Health and Nutrition Examination Survey 2005-06 to 2017-18, with mortality follow-up data censored through 2019. The standardized prevalence of HRBs was calculated for populations with and without depression. Poisson regression models were used to calculate the mortality rate ratio (MRR). Based on model adjusting for socio-demographic factors, the attenuation of MRR was determined after further adjustment for HRBs. RESULTS: A total of 3147 participants were identified as having depression. All HRBs showed a significantly higher prevalence among the population with depression. After adjusting for socio-demographic factors, depression was associated with 1.7 and 1.8 times higher all-cause and cardiovascular disease mortality rate, respectively. Further adjustment for all current HRBs resulted in a 21.9 % reduction in all-cause mortality rate and a 15.4 % decrease in cardiovascular disease mortality rate. LIMITATION: HRBs were reported at a single time point, and we are unable to demonstrate a causal effect. CONCLUSION: At least 1/5 of excess mortality for population with depression was attributable to HRBs. Efforts should be made to address HRBs among population with depression.

2.
Heliyon ; 10(7): e29088, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617947

RESUMO

Road dust is a major source of pollution in the environment, carrying different pollutants, including heavy metals and metalloids, from one location to another. This study assesses the concentrations of eight heavy metals and one metalloid (Zn, Pb, Mn, Fe, Cr, Cu, Cd, Ni, and As) in dust samples collected from sixty-eight streets of Sharjah, United Arab Emirates using ICP-OES, as well as investigates their effects on both the environment and humans. Mean concentrations of the elements in µg/g across the sites were 392 ± 46 (Zn), 68.28 ± 11.3 (Pb), 1437 ± 67 (Mn), 39,481 ± 4611 (Fe), 460 ± 31 (Cr), 150 ± 44 (Cu), 1.25 ± 0.65 (Cd), 856 ± 72 (Ni), and 0.97 ± 0.28 (As). The Cdeg and ERI calculated from the study were 54.79 and 573, respectively, suggesting varying pollution levels. The highest contributions were from Ni, Cd, Zn, Cu, Cr, and Pb, especially in areas with heavy traffic. The non-carcinogenic risk assessments were generally low for the three routes of exposure, except HQoral that was slightly higher for children. Similarly, none of the elements exhibited any carcinogenic risk except chromium. Overall, the cancer risk is considered low. In view of the limited studies from UAE in relation to the metal content of road-deposited dusts, the current study serves as novel knowledge, especially in the context of geographical areas with a higher occurrence of sandstorms and the presence of particulate matter. The study also adds to the global understanding of the contribution of street dust to environmental pollution and its implications for human health.

3.
Mar Pollut Bull ; 202: 116367, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621353

RESUMO

This study reports, for the first time, the baseline levels for fifteen trace metals in M. galloprovincialis tissue from around the Mediterranean, Marmara and Black Seas. The environmental quality in the surrounding seawater was assessed i.e., a mussel farm was investigated by using CF and DC indices, and the water quality was qualified as good for the aquacultural activities. A strong Cu-regulation in the transplanted mussels was observed and it ranged between 3.20 and 3.60 µg/g d.w. The highest bioavailability and bioconcentration of the particulate Fe fraction could present a health risk to consumers with a low risk level (1 < THQ < 9.9). Cr is considered the limiting metal for mussel consumption (< 2 kg/day). The metal contamination gradient was assessed using TEPI and TESVI indices that identified seven reference stations on the large scale and revealed that Cd is the most investigated metal in the literature databases, and found that Pb was the most bioavailable contaminant in the areas examined.

4.
Heliyon ; 10(7): e29189, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623211

RESUMO

This study aimed to assess water contamination and associated health risks for populations residing in the mining areas of Kambélé and Bétaré-Oya. Key parameters, including pH, EC, TDS, TSS, and concentrations of metallic elements (Cd, Cr, Fe, Pb and Mn), were measured using established water analysis techniques. The analysis included multivariate statistical assessments, calculation of metal pollution and water quality indices, and health risk determinations, including daily intake (DI) and hazard quotient (HQ). Findings indicate a diverse pH range (5.26 < pH < 8.72), low mineralization (33.22 < EC (µS/cm) < 179.64), and elevated TSS content (22.53 < TSS (in mg/l) < 271.51). Metallic elements were observed in the descending order of Fe > Mn > Pb > Cr > Cd. Water quality assessments using the Water Quality Index (WQI) categorized sites as displaying doubtful to very poor quality, notably Woupy (WQI = 719.14) in Kambélé and Mali (WQI = 794.24) in Bétaré-Oya, with Heavy metal Pollution Index (HPI) values exceeding 100. These outcomes highlight consistent chemical degradation of surface water, posing potential risks to local populations' health and well-being. The study emphasizes the critical need for proactive environmental protection measures in mining areas, recommending the adoption of healthy mining practices and effective site reclamation strategies. Furthermore, future studies should consider exposure duration's potential impact on residents' health problems in these areas. Overall, this study contributes significantly to understanding and addressing the intricate interplay between mining activities, water quality, and public health in the Cameroon countryside.

5.
Br J Clin Psychol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623602

RESUMO

OBJECTIVES: Theory and research suggest that distinct self-damaging behaviours (SDBs; e.g., nonsuicidal self-injury [NSSI], restrictive eating, binge eating, drug misuse, alcohol misuse) share similar motives. However, few studies have used a common self-report inventory to investigate the shared relevance and relative salience of motives for SDBs. Accordingly, the present study: (1) examined whether self-report scales assessing intrapersonal motives (i.e., relieving negative emotions, enhancing positive emotions, punishing oneself) and interpersonal motives (i.e., bonding with others, conforming with others, communicating distress, communicating strength, reducing demands) have invariant factor structures across SDBs; and (2) compared the salience of these motives across SDBs. METHODS: 1018 adults (54.6% men, Mage = 35.41 years) with a history of SDBs were allocated to the following groups: NSSI (n = 213), restrictive eating (n = 200), binge eating (n = 200), drug misuse (n = 200) or alcohol misuse (n = 205). Participants reported on their motives for engaging in their allocated SDB. Measurement invariance analyses compared the factor structures and latent means of the motive scales across SDBs. RESULTS: The motive scales had comparable factor structures across SDBs. Intrapersonal motives were most strongly endorsed for NSSI and drug misuse. Interpersonal motives were most strongly endorsed for drug and alcohol misuse. All motives were least salient to restrictive eating. CONCLUSIONS: Results suggest that common motives underlie distinct SDBs and that they can be adequately assessed using a single self-report inventory. However, certain motives are more relevant to some SDBs than others, with restrictive eating being the most motivationally distinct SDB. This knowledge can inform transdiagnostic models and interventions for SDBs.

6.
J Occup Med Toxicol ; 19(1): 12, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622636

RESUMO

BACKGROUND: Obesity rates are rising in the armed forces of Western democratic countries, impacting military readiness and health. This highlights the need for preventive health risk assessments and countermeasures. METHODS: Using mandatory health examination data from 2018 to 2022, we analyzed the prevalence of obesity, health risks, and associated specific military risk factors (rank and unit) in 43,214 soldiers of the German Armed Forces. Statistical methods included χ2 contingencies and binary logistic regressions. RESULTS: The prevalence of obesity (BMI ≥ 30) was 18.0%. Male soldiers (OR = 3.776) and those with an officer's rank (OR = 1.244) had an increased chance for obesity. Serving in a combat unit reduced the chance of being obese (OR = .886). Considering BMI and waist circumference, 2.4% of the total sample faced extremely high cardiovascular and metabolic health risks, while 11.0% and 11.6% had very high or high health risks, respectively. CONCLUSIONS: Our data underscore the importance of targeting obesity-related health risk factors in soldiers to ensure their well-being and deployment readiness.

8.
Environ Health Insights ; 18: 11786302241246455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628468

RESUMO

Background: Khat (Catha edulis Forsk) is a stimulant plant grown in East Africa and the Arabian Peninsula. Heavy metal pollution has been a global concern due to its acute and chronic health effects and the major route of exposure is the consumption of contaminated foods. In this study, the determination and health risk assessment of heavy metals (Mn, Cu, Zn, Ni, Cr, Cd, and Pb) in khat and its support soil samples was carried out. Materials and Methods: Khat and its support soil were analyzed for the levels of 7 toxic heavy metals by Atomic Absorption Spectrophotometer. Samples were randomly collected from 3 districts of khat farming kebeles and digested using mixture of strong acids. Results: The concentrations (mg/kg) of analytes in soil and khat samples were: Cu (6.78-35.80); Zn (24.30-199.02); Mn (7.59-1855.40); Ni (6.37-64.80); Cr (0.82-169.20); Cd (14.2-38.8), and Pb (ND). Among the analyzed heavy metals in soil, Mn was with the highest concentration, followed by Zn, Cr, Cu, Ni, and Cd while that of Zn was the maximum followed by Cu, Mn, and Cr in khat. The levels of Zn, Cr, and Cd in soil samples from all study sites and detected concentrations of Cr in khat samples exceeded the recommended FAO/WHO levels. Conclusion: The hazard index (HI) of metals in khat from study areas was less than 1 indicating a less likelihood of non-carcinogenic toxicological health effects. However, the presence of these toxic chemicals in soil and khat indicates product contamination and needs extensive further investigation involving other heavy metals.

9.
Huan Jing Ke Xue ; 45(5): 2548-2557, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629520

RESUMO

A total of 18 metal elements in ambient PM2.5 in Zhengzhou were continuously determined using an online heavy metal observation instrument in January and April, 2021, and the changes in element concentrations were analyzed. Metal elements were traced via enrichment factors, positive matrix factorization (PMF), and a characteristic radar chart. The US EPA health risk assessment model was used to assess the health risks of heavy metals, and the backward trajectory method and the concentration-weighted trajectory (CWT) method were used to evaluate the potential source regions of health risks. The results showed that the element concentrations were higher in spring, and the sum of Fe, Ca, Si, and Al concentrations accounted for 89.8% and 87.5% of the total element concentrations in winter and spring, respectively. Cd was enriched significantly, which was related to human activities. The concentrations of Pb, Se, Zn, Ni, Sb, and K in winter and Cr, Ni, Fe, Mn, V, Ba, Ca, K, Si, and Al in spring increased with the increasing pollution level. The results of PMF and the characteristic radar chart showed that the main sources of metal elements in winter and spring were industry, crust, motor vehicles, and mixed combustion, with industry and mixed combustion pollution occurring more often in winter and crust pollution occurring more often in spring. Significant non-carcinogenic risks existed in both winter and spring with more severe health risks in winter, and Mn caused significant non-carcinogenic risks. The health risks in winter were mainly influenced by Zhengzhou and surrounding cities and long-distance transport in the northwest, and the health risks in spring were mainly influenced by Zhengzhou and surrounding cities.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , China
10.
Huan Jing Ke Xue ; 45(5): 2558-2570, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629521

RESUMO

Atmospheric polycyclic aromatic hydrocarbons (PAHs) and their derivatives are a global problem that influences the environment and threatens human health. To investigate the characteristics, sources, and health risk assessment of PM2.5-bound PAHs and their derivatives, PM2.5 were collected at an urban site in Zibo from November 5 to December 26, 2020, and the concentrations of 16 conventional PAHs, nine NPAHs, and five OPAHs in PM2.5 were analyzed using gas chromatography-mass spectrometry. Source apportionment of PAHs and their derivatives was conducted using diagnostic ratios and a PMF model, and the health risks of PAHs and their derivatives to adult men and women were evaluated using the source-dependent incremental lifetime cancer risk (ILCR) model. The results showed that the average concentrations of ∑16pPAHs, ∑9NPAHs, and ∑5OPAHs in PM2.5 of Zibo City during the sampling period were (41.61 ± 13.40), (6.38 ± 5.70), and (53.20 ± 53.47) ng·m-3, respectively. The concentrations of the three PAHs increased significantly after heating, which were 1.31, 2.04, and 5.24 times larger than those before heating. During the sampling period, Chr, BaP, and BaA were the dominant components of pPAHs; 9N-Ant and 2N-Flt + 3N-Flt were the dominant components of NPAHs; and ATQ and BZO were the dominant components of OPAHs. Source apportionment results showed that motor vehicles were the main source of PAHs and their derivatives in PM2.5 before heating, whereas after heating, the main sources were the mixed source of coal and biomass combustion and secondary formation. The total BaP equivalent (TEQ) was 14.5 ng·m-3 during the sampling period, and the TEQ increased significantly after heating, which was approximately 1.2 times of that before heating. Assisted by the individual PAH source apportionment results, the ILCR of PM2.5-boundPAHs and NPAHs in Zibo City had a certain potential carcinogenic risk for adult males (1.06 × 10-5) and females (9.32 × 10-6). Among them, the health risks of PAHs from gasoline vehicles, diesel vehicles, and coal/biomass combustion were significantly higher than those from other emission sources.


Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Feminino , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Calefação , Monitoramento Ambiental/métodos , Medição de Risco , Carvão Mineral/análise , China
11.
Huan Jing Ke Xue ; 45(5): 2983-2994, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629559

RESUMO

Taking a city in Guangdong Province as the research area, the concentration and spatial distribution characteristics of heavy metals in the surface soil were studied to clarify the situation of soil heavy metal pollution and priority control factors, providing basic data for the prevention and control of soil heavy metal pollution in the city. The content characteristics of heavy metals in 221 soil samples in the city were analyzed, and the potential health risk assessment and source analysis were carried out through the Monte Carlo model, the potential health risk assessment (HRA) model, and the PMF receptor model. It was found that heavy metals ω(As), ω(Hg), ω(Cd), ω(Pb), ω(Cr), ω(Cu), ω(Ni), and ω(Zn) in the soil of the city were 18.16, 0.43, 1.46, 68.57, 98.34, 64.19, 26.53, and 257.32 mg·kg-1, respectively, with a moderate to high degree of variation. Except for Ni concentration, the soil concentrations of other heavy metal elements exceeded the background values of soil in Guangdong Province to a certain extent, and the concentrations of Cd and Zn exceeded the national secondary standards, resulting in severe heavy metal pollution; the main sources of heavy metals were industrial sources, and natural parent materials, lead battery manufacturing, transportation, artificial cultivation, and pesticide and fertilizer inputs also had an undeniable impact on the accumulation of heavy metals in the soil. Heavy metals in the soil had a certain degree of tolerable carcinogenic health risk for both children and adults, whereas non-carcinogenic risks could be ignored. The potential health risk of children was greater than that of adults, and the main exposure route was through oral intake. The input sources of pesticides and fertilizers and As should be the main controlling factors for the health risks of heavy metals in the city's soil, followed by mixed sources and Cr. There were differences in the spatial distribution characteristics and relative pollution levels of heavy metals, and it is necessary to deepen zoning monitoring and control, strengthen soil pollution prevention and control, and reduce human input of heavy metals in soil.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Monitoramento Ambiental , Solo , Cádmio/análise , Poluentes do Solo/análise , Metais Pesados/análise , Medição de Risco , China
12.
Environ Anal Health Toxicol ; 39(1): e2024005-0, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38631397

RESUMO

The manuscript presents the investigation results on the pollution and risk of metal mines, and it is considered an important report on environmental pollution near mines in Nigeria, with archival value. The research involved soil sampling and heavy metal analysis for about 12 months in three metal mines. Based on these results, the paper provides information on pollution levels and hazards using well-known methods like pollution and ecological risk indexes. The increasing population in urban communities attracted by various industrial, economic and social activities causes contamination of atmospheric environment that can affect human health. We investigated heavy metal distributions, correlation coefficient among elements, ecological indices and probable health risk assessment in street dust and topsoil from Nkpor and Onitsha urban suburb, Nigeria. The mean concentration of heavy metals in car dust from Onitsha and Nkpor suburb follows thus: Fe > Mn > Cu > As > Pb > Ni > Cr. The decreasing trend of heavy metal in rooftop dust from both area: Fe > Mn > Cu > Pb > As > Ni > Cr whereas metal contents in topsoil were: Fe > Mn > Cu > Pb > Ni > Cr > As for both areas. The degree of pollution indices was characterized by contamination factor (CF), geo-accumulation factor (I-geo), pollution load index (PLI), Nemerow (PN), ecological and potential ecological risk index (ER and PERI) which indicated low pollution in the urban street environment. The results of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that the estimated heavy metals displayed sources from atmospheric deposition, natural origin and anthropogenic sources. Risk assessment revealed that ingestion of dust and soil was the significant route for heavy metals exposure to the populace followed by inhalation, then dermal contact. Considering all factors, non-cancer risk was more prominent in children than adults and no significant health hazard could be attributed to both aged groups as of the period of study except for As and Ni that needs constant monitoring to avoid exceeding organ damaging threshold limit of 1 × 10-4.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38632201

RESUMO

COVID-19 has been a significant global concern due to its contagious nature. In May 2021, Taiwan experienced a severe outbreak, leading the government to enforce strict Pandemic Alert Level 3 restrictions in order to curtail its spread. Although previous studies in Taiwan have examined the effects of these measures on air quality, further research is required to compare different time periods and assess the health implications of reducing particulate matter during the Level 3 lockdown. Herein, we analyzed the mass concentrations, chemical compositions, seasonal variations, sources, and potential health risks of PM1.0 and PM2.5 in Central Taiwan before and during the Level 3 lockdown. As a result, coal-fired boilers (47%) and traffic emissions (53%) were identified as the predominant sources of polycyclic aromatic hydrocarbons (PAHs) in PM1.0, while in PM2.5, the dominant sources of PAHs were coal-fired boilers (28%), traffic emissions (50%), and iron and steel sinter plants (22.1%). Before the pandemic, a greater value of 20.9 ± 6.92 µg/m3 was observed for PM2.5, which decreased to 15.3 ± 2.51 µg/m3 during the pandemic due to a reduction in industrial and anthropogenic emissions. Additionally, prior to the pandemic, PM1.0 had a contribution rate of 79% to PM2.5, which changed to 89% during the pandemic. Similarly, BaPeq values in PM2.5 exhibited a comparable trend, with PM1.0 contributing 86% and 65% respectively. In both periods, the OC/EC ratios for PM1.0 and PM2.5 were above 2, due to secondary organic compounds. The incremental lifetime cancer risk (ILCR) of PAHs in PM2.5 decreased by 4.03 × 10-5 during the pandemic, with PM1.0 contributing 73% due to reduced anthropogenic activities.

14.
J Environ Manage ; 358: 120853, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608578

RESUMO

Identifying high-risk factors (heavy metals (HMs) and pollution sources) by coupling receptor models and health risk assessment model (HRA) is a novel approach within the field of risk assessment. However, this coupled model ignores the contribution of spatial differentiation to high-risk factors, resulting in the assessment being subjective. Taking Dongting Plain (DTP) as an example, a coupling framework by jointly using the positive matrix factorization model (PMF), HRA, Monte Carlo simulation, and geo-detector was developed, aiming to identify high-risk factors in groundwater, and further explore key environmental variables influencing the spatial heterogeneity of high-risk factors. The results showed that at least 82.86 % of non-carcinogenic risks and 97.41 % of carcinogenic risks were unacceptable for people of all ages, especially infants and children. According to the relationships among HMs, pollution sources, and health risks, As and natural sources were defined as high-risk HMs and sources, respectively. The interactions among Holocene thickness, oxidation-reduction potential, and dissolved organic carbon emerged as the primary drivers of spatial variability in high-risk factors, with their combined explanatory power reaching up to 74%. This proposed framework provides a scientific reference for future studies and a practical reference for environmental authorities in developing effective pollution management measures.

15.
Sci Total Environ ; 927: 171968, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588734

RESUMO

In the northern East African Rift System, the Republic of Djibouti relies exclusively on groundwater, with levels of fluoride (up to 14 mg/L) and nitrate (up to 256 mg/L) posing potential health risks. To address this, 362 samples were considered, including 133 shallow groundwater samples, along with new and previously published data dating back to 2012 on deep (88) and thermal (141) groundwater samples. To understand the enrichment mechanisms, dissolved anion and cation constituents, geochemical and thermodynamic tools, and stable isotope ratios, such as δ2H(H2O), δ18O(H2O), δ15N(NO3-), and δ18O(NO3-), were used. In particular, two activity diagrams (Mg2+ vs. Ca2+ and Na+ vs. Ca2+), focused on aqueous and solid fluoride species in an updated thermodynamic dataset of 15 fluoride-bearing minerals, are shown for the first time. The dataset offers new and valuable insights into fluoride geochemistry (classic thermodynamic datasets combined with geochemical codes rely solely on fluorapatite and fluorite F-bearing minerals). Activity diagrams and geochemical modeling indicate that mineral dissolution primarily drives groundwater fluoride enrichment in all water types, whereas the elevated nitrate levels may stem from organic fertilizers like animal manure, as indicated by nitrate isotopes and NO3-/Cl- vs Cl- diagrams. Despite the arid climate and 2H18O enrichment in shallow waters, evaporation seems to play a minor role. Monte Carlo simulations and sensitivity analysis were used to assess the health risks associated with elevated F- and NO3- concentrations. Mapping-related spatial distribution analysis identified regional contamination hotspots using a global Moran's I and GIS tools. One fluoride and three nitrate contamination hotspots were identified at a p-value of 0.05. Groundwater chemistry revealed that 88 % of groundwater being consumed exceeded the permissible levels for fluoride and nitrate, posing potential health risks, particularly for teenagers and children. This study pinpoints specific areas with excessive nitrate and fluoride contamination, highlighting a high non-carcinogenic risk.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38613748

RESUMO

The Wuda coal fire in Inner Mongolia, China, is a global catastrophic event. It emits a huge volume of organic pollutants, including polycyclic aromatic compounds (PACs), which are widely concerning due to their physiological toxicity and environmental persistence. However, there is no systematic study on the enrichment and migration patterns of PACs emitted from coal fires. Here, we compared samples from coal fire sponges and surrounding soil, and analyzed 47 PACs using GC × GC-TOFMS. Data analysis showed that the average content of 16 polycyclic aromatic hydrocarbons (16PAHs) in the coal fire sponge was 15400.65 ng/g, which is about 4.2 times higher than that in the surrounding soil. Meanwhile, 31 PACs were detected at levels far exceeding those of 16PAHs. The distribution pattern of PACs showed that coal fire sources are more likely to produce and store 16PAHs while surrounding soils are more likely to be enriched with PAH derivatives. The cancer risk assessment revealed a significant cancer risk in both the coal fires and the surrounding soil. The formation mechanism of oxygenated PAHs was also explored, and it was found that coal fires emit 16PAHs and alkylated PAHs, which oxidize to form oxygenated PAHs during migration to surrounding soils. The value of naphthaldehyde/alkylated naphthalene (< 2) can be referenced as characteristic markers of coal fire pollution. This provides a new perspective on the sources of PACs in the current environment.

17.
Environ Int ; 186: 108650, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38613936

RESUMO

The eagle owl (Bubo bubo) population in Norway is today classified as critically endangered on the red list of endangered species. Because previous studies have detected high concentrations of Persistent Organic Pollutants (POPs) in birds of prey, concerns have been raised whether POPs exposure are a significant factor to the substantial decline of the eagle owl population. The aims of this study were to measure the levels of POPs in eagle owls and to assess whether POPs may represent a potential health risk. POPs were analysed in liver samples from 100 eagle owls collected between 1994 and 2014. The concentrations of POPs were generally very high and individual birds had levels among the highest measured worldwide. The contaminant groups analysed were highly correlated (p < 0.0001). The concentrations of sum of Polychlorinated Biphenyls (∑PCB) exceeded the threshold value from moderate to severe health risk in 90% of the birds. The birds with cachectic or lean body condition had significantly higher levels of contaminants than those with higher body condition scores. No significant temporal or spatial trends were noted. The lack of temporal trends, suggest that the downward trend of POPs, appear to be levelling off. The lack of differences between inland and coastal regions suggest that the risk of exposure may be comparable between predatory birds feeding in marine or terrestrial food webs. The significantly higher POPs levels detected in individuals with poor body condition may be due to reduced fat stores and thereby higher concentration in the remaining fat and/or the weight loss could be induced by toxic effects. The high proportion of birds exceeding the threshold values for severe and high risk of adverse effects, suggest that the high contamination load may reduce the eagle owl's fitness and survival and, thus, contribute to decline of the eagle owl population.

18.
Chemosphere ; : 141962, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38614399

RESUMO

The impact of shale gas extraction on surrounding environmental media remains unclear. In this study, the current state of contamination by polycyclic aromatic hydrocarbons (PAHs), which are high-frequency contaminants of shale gas, was investigated in the soil surrounding emerging shale gas development sites. The source analysis of PAHs was conducted in the soils of shale gas extraction sites using positive matrix factorization (PMF). The health risk assessment (HRA) was calculated for ingestion, dermal contact, and inhalation exposures, and the priority sources of PAHs in the soil were jointly identified by PMF and HRA to refine the contribution level of different individual PAHs to the carcinogenic risk. The results showed that both Sichuan and Chongqing mining site soils were contaminated to different degrees. Shale gas extraction has an impact on the surrounding soil, and the highest contributing source of PAHs in the mining site soil of Sichuan was anthropogenic activity, accounting for 31.6%, whereas that in the mining site soil of Chongqing was biomass combustion and mixed automobile combustion, accounting for 35.9%. At the two mining sites in Sichuan and Chongqing, none of the three exposure pathways (ingestion, dermal contact, and inhalation) posed a carcinogenic risk to children, whereas the dermal exposure pathway posed a carcinogenic risk to adults. Health risk assessments based on specific source assignments indicate that when managing soil pollution, the control of fossil fuel combustion and vehicular emissions should be prioritized.

19.
Mar Pollut Bull ; 202: 116337, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615519

RESUMO

The concentrations of dissolved arsenate in natural water has an important impact on human health. The distributions, seasonal variation and major influencing factors of total dissolved inorganic arsenic (TDIAs) were studied in the Yellow River. The concentrations of TDIAs in the middle and lower reaches of the Yellow River ranged from 4.3 to 42.4 nmol/L, which met the standards for drinking water of WHO. The seasonal variation of TDIAs concentration in the middle and lower reaches of the Yellow River was highest in summer, followed by autumn and winter, and lowest in spring. The influencing factors of TDIAs concentration in the middle and lower reaches of the Yellow River mainly include the hydrological conditions, topographical variation, the adsorption and desorption of suspended particulate matter (SPM) and the intervention of human activities. The absorption of TDIAs by phytoplankton in the Xiaolangdi Reservoir (XLD) is an important factor affecting its distributions and seasonal variation. The annual flux of TDIAs transported from the Yellow River into the Bohai Sea ranged from 1.1 × 105 to 4.5 × 105 mol from 2016 to 2018, which is lower than the flux in 1985 and 2009. The carcinogenic risks (CR) of TDIAs for children and adults were all within acceptable levels (<10-6).

20.
Chemosphere ; : 141964, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615956

RESUMO

The consumption of nitrate-contaminated groundwater is often associated with potential health risks, particularly in children. This study aimed to assess the hydrochemistry and nitrate contamination in groundwater of Kerala state, India for the years 2010 and 2018 and evaluate the potential human health risks due to nitrate exposure in adults, and children through oral ingestion and dermal contact pathways. Nitrate-contaminated zones were identified by spatial mapping of nitrate concentration based on groundwater quality data of 324 wells. Groundwater is typically acidic to slightly alkaline, and the electrical conductivity (EC) varied from 33 to 1180 µS/cm in 2010 and 34.6 to 2500 mg/L in 2018 indicating a noticeable increase over the years. Most samples fall within low salt enrichment category. The nitrate concentration in groundwater varied from 0 to 173 mg/L with a mean of 15.4 mg/L during 2010 and 0 to 244 with a mean of 20.3 mg/L during 2018. Though nitrate concentrations show uneven spatial distributions due to both natural and anthropogenic sources, the spatial clustering of higher concentrations remains almost same in both periods. In 2010, non-carcinogenic risk, as measured by Health Index Total (HITotal) values in groundwater for the investigated region, ranged from 0.005 to 4.170 (mean of 0.349) for males, 0.005 to 4.928 (mean of 0.413) for females, and 0.008 to 7.243 (mean of 0.607) for children, while in 2018, the corresponding values varied from 0.001 to 5.881 (mean of 0.501) for males, 0.002 to 6.950 (mean of 0.592) for females, and 0.003 to 10.215 (mean of 0.870) for children, indicating a substantial increase in risk, for females and children. Greater health risk is observed in children during both the periods. The findings emphasize the need for proper water quality management, especially in regions with higher vulnerability to nitrate pollution, to safeguard human health and well-being.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...